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Figure 1 N (log scale) required for detection of association, for a type I error of (genomewide-screening strategy) and a power�85 # 10
of 80%, according to q, for . The curves are drawn for (A) and (B), under the assumption that linkage disequilibriumg � 2 m � .10 m � .50
is equal to its maximum, dmax (curve 1), .75dmax (curve 2), and .5dmax (curve 3).
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Maximum-Likelihood Expression of the Transmission/
Disequilibrium Test and Power Considerations

To the Editor:
The classic transmission/disequilibrium test (TDT) pro-
posed by Spielman et al. (1993) for analysis of family-
based case-control studies is a matched x2 test referred
to as “McNemar’s test.” However, the same data also
could be analyzed by a likelihood model, as suggested
by Terwilliger (1995). In the present letter, we study the
maximum likelihood (ML) statistic derived from this
model and show that, when a common asymptotic
threshold is used, the ML statistic is expected to be
slightly more powerful than the classic McNemar x2. We
also investigate the influence of linkage disequilibrium
and allelic frequencies on the power of the ML-TDT,
with comparison with the results obtained by means of
the classic TDT in a recent study (Risch and Merikangas
1996) .

Using the notation in Spielman et al.’s (1993) table 2,
we consider a marker locus with codominant alleles M1

and M2, where b (c) is the number of alleles M1 (M2)
transmitted from a heterozygous M1M2 parent to an
affected child. The classic TDT test is ,2 2x � (b � c) /nTD

where is the number of informative hetero-n � b � c
zygous parents. Let p be the probability that allele M1

is transmitted from an M1M2 parent to an affected child;
then L(p)—the likelihood for the same data—can be
written as . The ML estimator of p,b cL(p) � p (1 � p)
denoted as “p,” is equal to b/n, and, in the ML-TDT,

the test of the null hypothesis is performed byp � .5
use of a standard likelihood-ratio test denoted as “L”:

L � 2Ln[L(p)/L(.5)]

� 2n[pLn(p) � (1 � p)Ln(1 � p) � Ln(.5)] .

When the alternative hypothesis, H1, is , isp ( .5 Lp(.5

asymptotically distributed as a x2 with 1 df, and this
procedure allows us to assess the effect of both alleles
in a single two-sided test; when H1 is , p is boundedp 1 .5
at .5 when , and is asymptotically distrib-b ! n/2 Lp(.5

uted as a 50:50 mixture of x2(0 df) and x2(1 df). In this
latter procedure, the effect of each allele should be as-
sessed separately, leading to two one-sided tests.

The two statistics, and , are strictly mono-2L xp(.5 TD

tonic, increasing with an increasing departure of p from
.5, and are perfectly correlated in rank, and they are
therefore equivalent in the sense discussed by Knapp et
al. (1994). In particular, it is possible to find a critical
threshold, denoted as cML, for , and another one,Lp(.5

cTD, for , such that the tests derived from the two2xTD

statistics have identical sizes (and consequently equal
power). However, this equivalence does not necessarily
imply the equality of the power of the tests when the
same critical threshold is used for the two statistics (i.e.,
when ). This corresponds to the common sit-c � cML TD

uation in which an asymptotic threshold is considered;
for example, for a .05 type I error, the critical value of
3.84 is used for both and . In this case, to2L xp(.5 TD

determine the statistic producing the highest value for a
given p, we are interested in the difference between

and , denoted as “d(p),” which is equal to2L xp(.5 TD
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Figure 2 N (log scale) required for detection of association, for a type I error of (genomewide-screening strategy) and a power�85 # 10
of 80%, according to q, for . The curves are as described in figure 1.g � 4

d(p) � 2n[pLn(p) � (1 � p)
2#Ln(1 � p) � Ln(.5) � 2(p � .5) ] .

The second derivative of d(p), which is equal to
, is a positive function for ,�12n{[p(1 � p)] � 4} p ( .5

since, for , is always !.25. Consequently,p ( .5 p(1 � p)
its primitive, which is the first derivative of d(p) and is
equal to , is an increas-2n[Ln(p) � Ln(1 � p) � 4p � 2]
ing function as p departs from .5 and is also positive,
since this first derivative is equal to 0 for . By thep � .5
same reasoning, d(p) is found to be a positive, increasing
function as p departs from .5. This result demonstrates
that, for , is always . As an example,2p ( .5 L 1 xp(.5 TD

we consider the data for insulin-dependent diabetes mel-
litus and the insulin-gene region, presented in Spielman
et al.’s (1993) table 5, where and . Theb � 78 c � 46
analysis by classic TDT provided a of 8.26, whereas2xTD

is equal to 8.35. This is not, of course, a largeLp(.5

difference, but it makes the point that, when asymptotic
thresholds are used, the ML-TDT is expected to be
slightly more powerful that the McNemar test.

We also compare the numbers of families that the ML-
TDT requires for detection of an association in different
situations versus those given in a recent paper by Risch
and Merikangas (1996), who used the classic McNemar
test. We use the same genetic model as was used by Risch
and Merikangas (1996), which includes (1) a disease
locus with two alleles, A and a, with population fre-
quencies q and , and a multiplicative model with1 � q
genotypic relative risk g and g2 for Aa and AA subjects,
respectively; and (2) a closely linked diallelic marker (re-
combination fraction 0) with alleles M1 and M2 with

respective frequencies m and . For reasons of com-1 � m
parability, we consider the one-sided test and de-Lp(.5

note as “Za” and “Z1�b” the standard normal deviates
corresponding to a type I error of a and a power of

, respectively (e.g., to achieve a power1 � b Z � .8421�b

of 80%). If it is assumed that, under H1, p follows a
normal distribution with expectation p1 and variance

, then the number of heterozygous2j � p (1 � p )/n1 1

M1M2 parents, n, is obtained by solving the following
equation:

2n[p Ln(p ) � (1 � p )b b b

2#Ln(1 � p ) � Ln(.5)] � (Z ) ,b a

where . This equation, which has no sim-p � p � jZb 1 1�b

ple analytical solution, can be solved by a straightfor-
ward iterative procedure. From n, the number of nec-
essary families, denoted as “N,” is obtained as N �

, where h, the probability that a parent with ann/2h
affected child is M1M2, is computed by use of formulas
developed by Risch and Merikangas (1996). For ex-
ample, when and a is fixed at (�8g � 4 5 # 10 Z �a

), we obtain, with the ML-TDT, for�5.33 N � 139
and for , comparedq � m � .10 N � 96 q � m � .50

with 150 and 103, respectively, for the classic TDT
(Risch and Merikangas 1996); the corresponding num-
bers for are 680 and 334 for the ML-TDT, com-g � 2
pared with 695 and 340.

However, as we have pointed out in a comment else-
where (Müller-Myhsok and Abel 1997), all computa-
tions performed by Risch and Merikangas (1996) were
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Figure 3 N (log scale) required for detection of an association, for a type I error of (candidate-gene strategy) and a power of�45 # 10
80%, according to q, for (A) and (B). The curves are drawn for , under the assumption that linkage disequilibrium isg � 2 g � 4 m � .50
equal to dmax, (curve 1), .75dmax (curve 2), and .5dmax (curve 3).

based on the optimal assumption that the analyzed allele
is the disease allele itself, whereas a more common sit-
uation is the analysis of polymorphisms that have a low
prior probability of being the disease allele. In this case,
we showed by theoretical means that the power of TDT
is highly dependent not only on the linkage disequilib-
rium between the disease allele and the analyzed allele
but also on the relative frequencies of both these alleles.
In the present paper we illustrate these findings when
using the ML-TDT. The coefficient of linkage disequi-
librium, d, is defined as , and the max-freq(AM ) � qm1

imum value of d, denoted as “dmax,” is reached when
freq(AM1) is the lowest of the two frequencies m and q.
When the formulas of Müller-Myhsok and Abel (1997)
are used, p1, the expectation of p, and h, the proportion
of heterozygous parents, have the following expressions:

p � [1 � (g � 1)a ]/[2 � (g � 1)(a � a )] ,1 1 1 2

where and , anda � q � (d/m) a � q � [d/(1 � m)]1 2

2h � u/{u � m [1 � (g � 1)a ]1

2�(1 � m) [1 � (g � 1)a ]} ,2

where .u � m(1 � m)[2 � (g � 1)(a � a )]1 2

In the context of a genomewide search, as proposed
by Risch and Merikangas (1996)—that is, a � 5 #

—figures 1 and 2 show the variations of N as a�810
function of q for two values of m (.10 and .50), with
various strengths of linkage disequilibrium. When g �

(fig. 1), the required sample size is generally signifi-2

cantly 11,000 families, except for situations close to the
optimal case ( and ), representing not onlym � q d � dmax

a technological challenge but also a major fieldworking
effort. A more pronounced gene effect ( ; fig. 2)g � 4
allows detection of an association for a larger range of
disease-allele frequencies in samples of realistic size (e.g.,
for , a sample of 1,000 families will lead to them � .5
detection of deleterious alleles having frequencies
.12–.72 when d is x75% of dmax). We also examined
the strategy of a candidate-gene approach investigating
10 genes with five diallelic markers per gene, which leads
to 100 one-sided tests and, consequently, to a required
nominal type I error of .0005 for each test, for an overall
type I error of .05. Results for are presented inm � .5
figure 3 and show that a sample of 1,000 families will
allow detection of most alleles when andg � 4 d x

and also will allow detection of a large number.75dmax

of alleles when , either having a frequency closeg � 2
to m or presenting a d close to dmax. Therefore, at present,
unless there is a high chance that the disease allele is
among the alleles analyzed in a genomewide search, the
candidate-gene approach is a more promising strategy
for TDT association studies. Alternatively, the initial use
of a lower critical threshold in a genomewide setting
(e.g., use of a two-stage strategy, as is commonly done
in linkage analysis) can indicate follow-up regions of
interest to be tested and can reduce both the genotyping
efforts and the necessary sample sizes. It is also impor-
tant to note that the power of such studies can be greatly
influenced by both the dominance model at the disease
locus and the resulting genotypic relative risks (Camp
1997). In any case, the ML-TDT appears to be an in-
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teresting alternative that can take into account multial-
lelic markers (Terwilliger 1995) and that easily can be
extended to introduce different p parameters, according
to some measured factors such as parent gender.
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